
Union-Find
CS 251 - Data Structures

and Algorithms

Note:
Slides complement the

discussion in class

2

Table of Contents
Solving the dynamic
connectivity problem

Union-Find

Quick-Find
Let’s prioritize the find
function

Quick-Union
Let’s prioritize the union
function

Improvements
Weighted Q-U and Path
Compression

01

02

03

04

Union-Find
01

Solving the dynamic connectivity
problem

4

Dynamic Connectivity

Input: a sequence of pairs of integers.

A pair (p, q) means “p is connected to q” where connectivity is:
• Reflexive: p is connected to p
• Symmetric: If p is connected to q, then q is connected to p.
• Transitive: if p is connected to q and q is connected to r, then p is connected to r.

Connectivity is an equivalence relation, which can separate objects into equivalence classes
(i.e., here, two objects are in the same equivalence class if and only if they are connected.)

Goal: Filter out extraneous pairs (i.e., ignore any pair (p, q) where p and q are ALREADY in the
same equivalence class)

5

Some Applications

Computer Networking

Determine if two
computer are
connected.

Variable Equivalency

Determine if two
variables refer to the
same object.

Sets (Mathematics)

If p and q are
connected, then they
are in the same set.

Graph Connectivity

A trajectory between a
pair of vertices in a
graph.

01

03 04

02

6

Union-Find

● Also knows as the Disjoint
Set.

● Stores a collection of
disjoint sets.

● Provides operations for
adding new sets, merging
sets, and finding a
representative member of
a set.

7

Some Conventions

● The Disjoint Set maintains an array called id that keeps track of the
component of each vertex. (i.e., if id 𝑖 = 4, then vertex 𝑖 is in the
component labeled 4).

● Initially, each vertex is its own component. So, id 𝑖 = 𝑖, ∀𝑖.

● Maintain a count of the number of components. That is, the starting
number of components is 𝑛 = |𝑉|.

8

Quick-Find
02

Let’s prioritize the find function

9

Quick-Find

UF(n)
count ← n
for i from 0 to n-1 do

id[i] ← i
end for

function union(p:item, q:item)
exit if id[p] = id[q]
idP ← id[p]
idQ ← id[q]
for i from 0 to n-1 do

if id[i] = idP then
id[i] ← idQ

end if
end for
count ← count – 1

end function

function find(p:item)
return id[p]

end function

function connected(p:item, q:item)
return id[p] = id[q]

end function

function count()
return count

End function

10

Quick-Find: (6, 2), (9, 5), (3, 0), (9, 4), (3, 1)

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

(6, 2) 0 1 2 3 4 5 2 7 8 9

(9, 5) 0 1 2 3 4 5 2 7 8 5

(3, 0) 0 1 2 0 4 5 2 7 8 5

(9, 4) 0 1 2 0 4 4 2 7 8 4

(3, 1) 1 1 2 1 4 4 2 7 8 4

0 1 2 3 4 5 6 7 8 9
0

1 2

3

4

56

7 8

9

11

Quick-Union
03

Let’s prioritize the union function

12

Quick-Union

● id is set up like a tree so that id[𝑖] gives you its parent, and
so on, until you get to a value that points to itself (the root).

● Only one update is needed to union two sets but how many
items are checked to find the root?

13

Algorithms, 4th edition, Sedgewick and Wayne. Official web site 14

Quick-Union

UF(n):
count ← n
for i from 0 to n-1 do

id[i] ← i
end for

function union(p:item, q:item)
idP ← find(p)
idQ ← find(q)
exit if idP = idQ
id[idP] ← idQ
count ← count – 1

end function

function find(p:item)
while p ≠ id[p] do

p ← id[p]
end while
return p

end function

function connected(p:item, q:item)
return find(p) = find(q)

end function

function count()
return count

end function

15

Quick-Union: (6, 2), (9, 5), (2, 0), (4, 9), (5, 1)

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

(6, 2) 0 1 2 3 4 5 2 7 8 9

(9, 5) 0 1 2 3 4 5 2 7 8 5

(2, 0) 0 1 0 3 4 5 2 7 8 5

(4, 9) 0 1 0 3 5 5 2 7 8 5

(5, 1) 0 1 0 3 5 1 2 7 8 5

0 1 2 3 4 5 6 7 8 9 2

0

2

1

5

9

7 8

4

3

16

About Quick-Union

● As connections are added, you get fewer but larger trees
(correspond to components).

● If the runtime of key operations depends on the height of
the tree, what is the worst case?

17

Improvements
04

Weighted Q-U and Path Compression

18

Remember Quick-Union

● id is set up like a tree so that id[𝑖] gives you its parent, and
so on, until you get to a value that points to itself (the root).

● Only one update is needed to union two sets but how many
items are checked to find the root?

19

Algorithms, 4th edition, Sedgewick and Wayne. Official web site 20

About Quick-Union

● As connections are added, you get fewer but larger trees
(correspond to components).

● If the runtime of key operations depends on the height of
the tree, what is the worst case?

21

Weighted Quick-Union

Algorithms, 4th edition, Sedgewick and Wayne. Official web site 22

Weighted
Quick-Union

UF(n:ℤ+)
count ← n
for i from 0 to n-1 do

id[i] ← i
size[i] ← 1

end for

function union(p:item, q:item)
idP ← find(p)
idQ ← find(q)
exit if idP = idQ
if size[idP] < size[idQ] then

id[idP] ← idQ
size[idQ] ← size[idQ] + size[idP]

else
id[idQ] ← idP
size[idP] ← size[idP] + size[idQ]

end if
count ← count – 1

end function

Same as Quick-Union:
find(p)
connected(p, q)
count()

23

Path Compression

● Main Idea: Ideally, we want every node to link directly to its root.

● How? After we find the root of p, update the root for every element
between p and the root (i.e., elements in the branch connect
immediately to the root).

● But...it’s expensive to change all the elements (remember Quick-Find?)

● Solution: Change the elements you examine as you look for the root. We
can do this in multiple ways (e.g., recursion, memoization).

● What’s the runtime?
24

Path Compression Goal

https://researchhubs.com/post/computing/algorithm-1/quick-union-improvement-compressing.html

Find(9) returns 0

Set to 0 the
id of all
nodes in
the path
from 9 to 0

https://researchhubs.com/post/computing/algorithm-1/quick-union-improvement-compressing.html

Recursive Path
Compression

function find(p:item)
if p = id[p] then

return p
end if
id[p] ← find(id[p])
return id[p]

end function

Same as [Weighted] Quick-Union:
UF(n)
union(p, q)
connected(p, q)
count()

26

Iterative Path
Compression

function find(p:item)
idP ← p
while idP ≠ id[idP] do

idP ← id[idP]
end while
while p ≠ idP do

t ← id[p]
id[p] ← idP
p ← t

end while
return idP

end function

Same as [Weighted] Quick-Union:
UF(n)
union(p, q)
connected(p, q)
count()

27

Slidesgo

Flaticon Freepik

Stories

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by

Stories

Finish
Do you have any questions?

28

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: Union-Find
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: Union-Find
	Slide 5: Dynamic Connectivity
	Slide 6: Some Applications
	Slide 7: Union-Find
	Slide 8: Some Conventions
	Slide 9: Quick-Find
	Slide 10: Quick-Find
	Slide 11
	Slide 12: Quick-Union
	Slide 13: Quick-Union
	Slide 14
	Slide 15: Quick-Union
	Slide 16
	Slide 17: About Quick-Union
	Slide 18: Improvements
	Slide 19: Remember Quick-Union
	Slide 20
	Slide 21: About Quick-Union
	Slide 22: Weighted Quick-Union
	Slide 23: Weighted Quick-Union
	Slide 24: Path Compression
	Slide 25: Path Compression Goal
	Slide 26: Recursive Path Compression
	Slide 27: Iterative Path Compression
	Slide 28: Finish

