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Union-Find
01

Solving the dynamic connectivity 
problem
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Dynamic Connectivity

Input: a sequence of pairs of integers.

A pair (p, q) means “p is connected to q” where connectivity is: 
• Reflexive: p is connected to p
• Symmetric: If p is connected to q, then q is connected to p.
• Transitive: if p is connected to q and q is connected to r, then p is connected to r.

Connectivity is an equivalence relation, which can separate objects into equivalence classes 
(i.e., here, two objects are in the same equivalence class if and only if they are connected.)

Goal: Filter out extraneous pairs (i.e., ignore any pair (p, q) where p and q are  ALREADY in the 
same equivalence class)
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Some Applications

Computer Networking

Determine if two 
computer are 
connected.

Variable Equivalency

Determine if two 
variables refer to the 
same object.

Sets (Mathematics)

If p and q are 
connected, then they 
are in the same set.

Graph Connectivity

A trajectory between a 
pair of vertices in a 
graph.
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Union-Find

● Also knows as the Disjoint 
Set.

● Stores a collection of 
disjoint sets.

● Provides operations for 
adding new sets, merging
sets, and finding a 
representative member of 
a set.
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Some Conventions

● The Disjoint Set maintains an array called id that keeps track of the 
component of each vertex. (i.e., if id 𝑖 = 4, then vertex 𝑖 is in the 
component labeled 4).

● Initially, each vertex is its own component. So, id 𝑖 = 𝑖, ∀𝑖.

● Maintain a count of the number of components. That is, the starting 
number of components is 𝑛 = |𝑉|.
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Quick-Find
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Let’s prioritize the find function
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Quick-Find

UF(n)
count ← n
for i from 0 to n-1 do

id[i] ← i
end for

function union(p:item, q:item)
exit if id[p] = id[q]
idP ← id[p]
idQ ← id[q]
for i from 0 to n-1 do

if id[i] = idP then
id[i] ← idQ

end if
end for
count ← count – 1

end function

function find(p:item)
return id[p]

end function

function connected(p:item, q:item)
return id[p] = id[q]

end function

function count()
return count

End function
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Quick-Find: (6, 2), (9, 5), (3, 0), (9, 4), (3, 1)

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

(6, 2) 0 1 2 3 4 5 2 7 8 9

(9, 5) 0 1 2 3 4 5 2 7 8 5

(3, 0) 0 1 2 0 4 5 2 7 8 5

(9, 4) 0 1 2 0 4 4 2 7 8 4

(3, 1) 1 1 2 1 4 4 2 7 8 4

0 1 2 3 4 5 6 7 8 9
0

1 2

3

4

56

7 8
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Quick-Union
03

Let’s prioritize the union function
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Quick-Union

● id is set up like a tree so that id[𝑖] gives you its parent, and 
so on, until you get to a value that points to itself (the root).

● Only one update is needed to union two sets but how many 
items are checked to find the root?
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Algorithms, 4th edition, Sedgewick and Wayne. Official web site 14



Quick-Union

UF(n): 
count ← n
for i from 0 to n-1 do

id[i] ← i
end for

function union(p:item, q:item)
idP ← find(p)
idQ ← find(q)
exit if idP = idQ
id[idP] ← idQ
count ← count – 1

end function

function find(p:item)
while p ≠ id[p] do

p ← id[p]
end while
return p

end function

function connected(p:item, q:item)
return find(p) = find(q)

end function

function count()
return count

end function
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Quick-Union: (6, 2), (9, 5), (2, 0), (4, 9), (5, 1)

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

(6, 2) 0 1 2 3 4 5 2 7 8 9

(9, 5) 0 1 2 3 4 5 2 7 8 5

(2, 0) 0 1 0 3 4 5 2 7 8 5

(4, 9) 0 1 0 3 5 5 2 7 8 5

(5, 1) 0 1 0 3 5 1 2 7 8 5

0 1 2 3 4 5 6 7 8 9 2

0

2

1

5

9

7 8

4

3
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About Quick-Union

● As connections are added, you get fewer but larger trees 
(correspond to components).

● If the runtime of key operations depends on the height of 
the tree, what is the worst case?
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Improvements
04

Weighted Q-U and Path Compression
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Remember Quick-Union

● id is set up like a tree so that id[𝑖] gives you its parent, and 
so on, until you get to a value that points to itself (the root).

● Only one update is needed to union two sets but how many 
items are checked to find the root?
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Algorithms, 4th edition, Sedgewick and Wayne. Official web site 20



About Quick-Union

● As connections are added, you get fewer but larger trees 
(correspond to components).

● If the runtime of key operations depends on the height of 
the tree, what is the worst case?
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Weighted Quick-Union

Algorithms, 4th edition, Sedgewick and Wayne. Official web site 22



Weighted 
Quick-Union

UF(n:ℤ+)
count ← n
for i from 0 to n-1 do

id[i] ← i
size[i] ← 1

end for

function union(p:item, q:item)
idP ← find(p)
idQ ← find(q)
exit if idP = idQ
if size[idP] < size[idQ] then

id[idP] ← idQ
size[idQ] ← size[idQ] + size[idP]

else
id[idQ] ← idP
size[idP] ← size[idP] + size[idQ]

end if
count ← count – 1

end function

Same as Quick-Union:
find(p)
connected(p, q)
count()
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Path Compression

● Main Idea: Ideally, we want every node to link directly to its root.

● How? After we find the root of p, update the root for every element 
between p and the root (i.e., elements in the branch connect 
immediately to the root).

● But...it’s expensive to change all the elements (remember Quick-Find?)

● Solution: Change the elements you examine as you look for the root. We 
can do this in multiple ways (e.g., recursion, memoization).

● What’s the runtime?
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Path Compression Goal

https://researchhubs.com/post/computing/algorithm-1/quick-union-improvement-compressing.html

Find(9) returns 0

Set to 0 the 
id of all 
nodes in 
the path 
from 9 to 0

https://researchhubs.com/post/computing/algorithm-1/quick-union-improvement-compressing.html


Recursive Path 
Compression

function find(p:item)
if p = id[p] then

return p
end if
id[p] ← find(id[p])
return id[p]

end function

Same as [Weighted] Quick-Union:
UF(n)
union(p, q)
connected(p, q)
count()
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Iterative Path 
Compression

function find(p:item)
idP ← p
while idP ≠ id[idP] do

idP ← id[idP]
end while
while p ≠ idP do

t ← id[p]
id[p] ← idP
p ← t

end while
return idP

end function

Same as [Weighted] Quick-Union:
UF(n)
union(p, q)
connected(p, q)
count()
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Slidesgo

Flaticon Freepik

Stories

CREDITS: This presentation template was created by Slidesgo, including 
icons by Flaticon, infographics & images by Freepik and illustrations by 

Stories

Finish
Do you have any questions?
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