

Note: Slides complement the discussion in class

Union-Find

Solving the dynamic connectivity problem

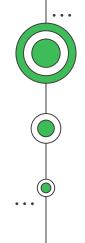
Quick-Find Let's prioritize the find function

Quick-Union

Let's prioritize the union function

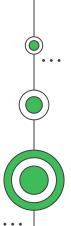
Improvements Weighted Q-U and Path Compression

Table of Contents



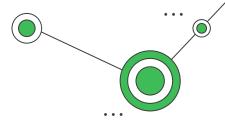
01**Union-Find**

Solving the dynamic connectivity problem



4

Dynamic Connectivity



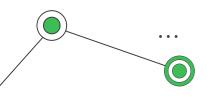
Input: a sequence of pairs of integers.

A pair (p, q) means "<u>p is connected to q</u>" where connectivity is:

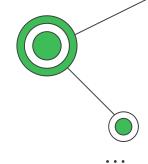
- **Reflexive**: p is connected to p
- **Symmetric**: If p is connected to q, then q is connected to p.
- **Transitive**: if p is connected to q and q is connected to r, then p is connected to r.

Connectivity is an equivalence relation, which can separate objects into equivalence classes (i.e., here, two objects are in the same equivalence class if and only if they are connected.)

<u>Goal</u>: Filter out extraneous pairs (i.e., ignore any pair (p, q) where p and q are **ALREADY** in the same equivalence class)



Some Applications



Computer Networking

Determine if two computer are connected.

Variable Equivalency

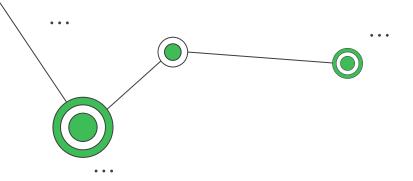
Determine if two variables refer to the same object.

Sets (Mathematics)

If p and q are connected, then they are in the same set.

Graph Connectivity

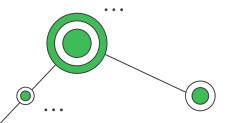
A trajectory between a pair of vertices in a graph.



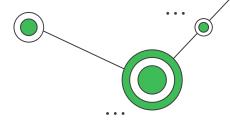
Union-Find

• Also knows as the **Disjoint Set**.

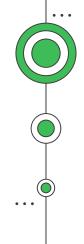
- Stores a collection of **disjoint** sets.
- Provides operations for adding new sets, merging sets, and finding a representative member of a set.



Some Conventions



- The Disjoint Set maintains an array called id that keeps track of the component of each vertex. (i.e., if id[i] = 4, then vertex *i* is in the component labeled 4).
- Initially, each vertex is its own component. So, $id[i] = i, \forall i$.
- Maintain a count of the number of components. That is, the starting number of components is n = |V|.



Let's prioritize the find function

9

UF(n) count ← n for i from 0 to n-1 do id[i] ← i end for function union(p:item, q:item) exit if id[p] = id[q] $idP \leftarrow id[p]$ $idQ \leftarrow id[q]$ for i from 0 to n-1 do if id[i] = idP then id[i] ← idQ end if end for count \leftarrow count - 1 end function

. . .

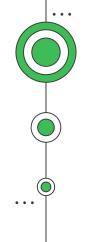
```
function find(p:item)
   return id[p]
end function
```

```
function connected(p:item, q:item)
   return id[p] = id[q]
end function
```

function count() return count End function

Quick-Find: (6, 2), (9, 5), (3, 0), (9, 4), (3, 1)

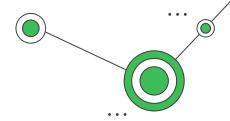
	0	1	2	3	4	5	6	7	8	9
-	0	1	2	3	4	5	6	7	8	9
(6, 2)	0	1	2	3	4	5	2	7	8	9
(9, 5)	0	1	2	3	4	5	2	7	8	5
(3,0)	0	1	2	0	4	5	2	7	8	5
(9, 4)	0	1	2	0	4	4	2	7	8	4
(3, 1)	1	1	2	1	4	4	2	7	8	4



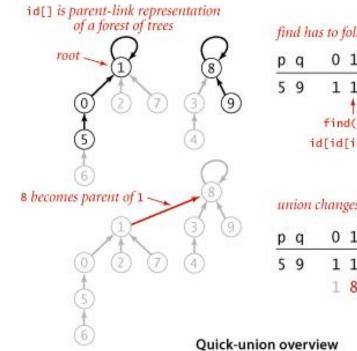
Let's prioritize the union function

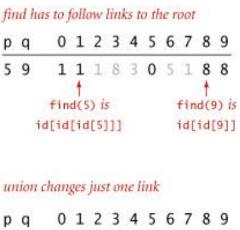
12

Quick-Union

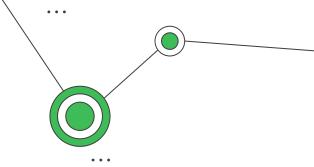


- id is set up like a tree so that id[*i*] gives you its parent, and so on, until you get to a value that points to itself (the root).
- Only one update is needed to union two sets but how many items are checked to find the root?



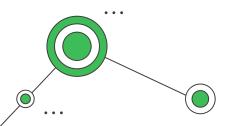


· .	<u></u>				~~	~~~.	~~	~	- T-	<u> </u>	~
5	9	1	1	1	8	3	0	5	1	8	8
		1	8	1	8	3	0	5	1	8	8
						1	10				



Quick-Union

. . .



```
UF(n):
    count ← n
    for i from 0 to n-1 do
        id[i] ← i
    end for
function union(p:item, q:item)
    idP ← find(p)
    idQ ← find(q)
    exit if idP = idQ
    id[idP] ← idQ
    count ← count - 1
end function
```

```
function find(p:item)
  while p ≠ id[p] do
      p ← id[p]
  end while
  return p
end function
```

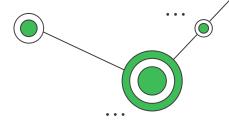
```
function connected(p:item, q:item)
    return find(p) = find(q)
end function
```

function count()
 return count
end function

Quick-Union: (6, 2), (9, 5), (2, 0), (4, 9), (5, 1)

	0	1	2	3	4	5	6	7	8	9	
	0	1	2	3	4	5	6	7	8	9	
(6, 2)	0	1	2	3	4	5	2	7	8	9	
(9, 5)	0	1	2	3	4	5	2	7	8	5	
(2, 0)	0	1	0	3	4	5	2	7	8	5	
(4, 9)	0	1	0	3	5	5	2	7	8	5	
(5, 1)	0	1	0	3	5	1	2	7	8	5	
	5	6 7	8	9		2				3	7

About Quick-Union



- As connections are added, you get fewer but larger trees (correspond to components).
- If the runtime of key operations depends on the height of the tree, what is the worst case?

O4 Improvements

. . .

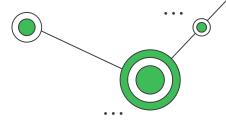
. . .

Weighted Q-U and Path Compression

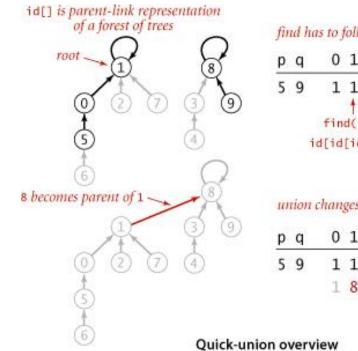
18

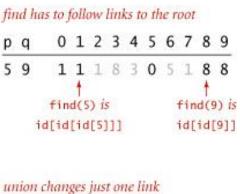
•••

Remember Quick-Union



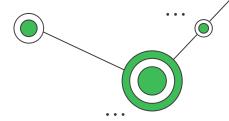
- id is set up like a tree so that id[*i*] gives you its parent, and so on, until you get to a value that points to itself (the root).
- Only one update is needed to union two sets but how many items are checked to find the root?



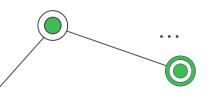


р	q	0	1	2	3	4	5	6	7	8	9
5	9	1	1	1	8	3	0	5	1	8	8
		1	8	1	8	3	0	5	1	8	8

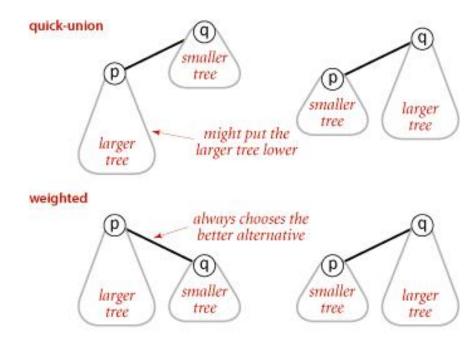
About Quick-Union

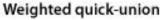


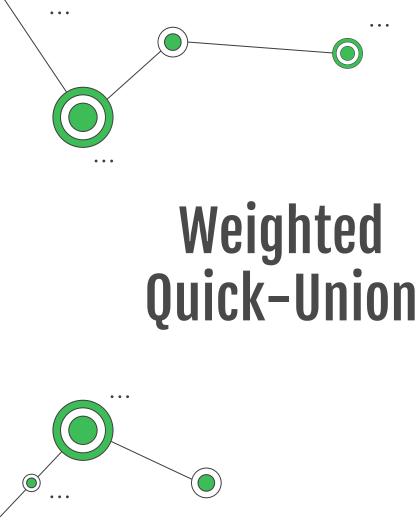
- As connections are added, you get fewer but larger trees (correspond to components).
- If the runtime of key operations depends on the height of the tree, what is the worst case?



Weighted Quick-Union





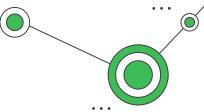


```
UF(n:\mathbb{Z}^+)
   count ← n
   for i from 0 to n-1 do
      id[i] ← i
      size[i] ← 1
   end for
function union(p:item, q:item)
   idP \leftarrow find(p)
   idQ \leftarrow find(q)
   exit if idP = idQ
   if size[idP] < size[idQ] then</pre>
      id[idP] \leftarrow idQ
      else
      id[idQ] ← idP
      size[idP] ← size[idP] + size[idQ]
   end if
   count \leftarrow count - 1
end function
```

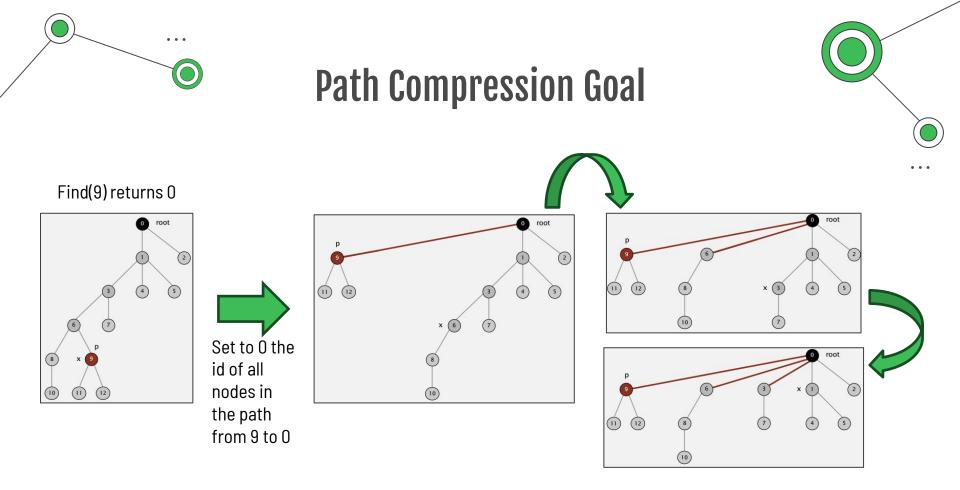
Same as Quick-Union: find(p) connected(p, q) count()

. . .

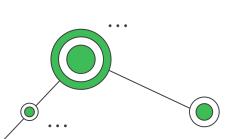
Path Compression



- Main Idea: Ideally, we want every node to link directly to its root.
- **How?** After we find the root of p, update the root for every element between p and the root (i.e., elements in the branch connect immediately to the root).
- But...it's expensive to change all the elements (remember Quick-Find?)
- **Solution:** Change the elements you examine as you look for the root. We can do this in multiple ways (e.g., recursion, memoization).
- What's the runtime?



https://researchhubs.com/post/computing/algorithm-1/quick-union-improvement-compressing.html

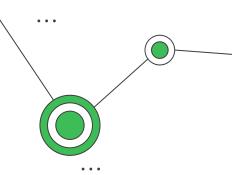


. . .

Recursive Path Compression Guide Compression function find(p:item) if p = id[p] then return p end if id[p] ← find(id[p]) return id[p] end function

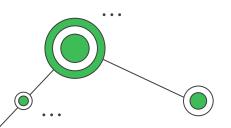
. . .

Same as[Weighted]Quick-Union: UF(n) union(p, q) connected(p, q) count()



Iterative Path Compression

. . .



```
function find(p:item)
    idP ← p
    while idP ≠ id[idP] do
        idP ← id[idP]
    end while
    while p ≠ idP do
        t ← id[p]
        id[p] ← idP
        p ← t
    end while
    return idP
end function
```

Same as[Weighted]Quick-Union: UF(n) union(p, q) connected(p, q) count()

Finish

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik and illustrations by Stories

