Union-Find
CS 251 - Data Structures
and Algorithms

| Note:
Slides complement the
discussion in class

O

@) O

@ © © ©

Union-Find
Solving the dynamic
connectivity problem

Quick-Find
Let's prioritize the find
function

Quick-Union
Let’s prioritize the union
function

Improvements
Weighted Q-U and Path
Compression

Table of Contents

01

Union-Find
Solving the dynamic connectivity
problem

Dynamic Connectivity

Input: a sequence of pairs of integers.

A pair (p, q) means “p is connected to g" where connectivity is:
Reflexive: p is connected to p
Symmetric: If p is connected to g, then g is connected to p.
Transitive: if p is connected to g and q is connected to r, then p is connected tor.

Connectivity is an equivalence relation, which can separate objects into equivalence classes
(i.e., here, two objects are in the same equivalence class if and only if they are connected.)

Goal: Filter out extraneous pairs (i.e., ignore any pair (p, q) where p and q are ALREADY in the
same equivalence class)

Some Applications

Computer Networking

Determine if two

computer are
connected.

Sets (Mathematics)

If pand g are
connected, then they
are in the same set.

Variable Equivalency

Determine if two
variables refer to the
same object.

Graph Connectivity

A trajectory between a
pair of verticesin a
graph.

Union-Find

Also knows as the Disjoint
Set.

Stores a collection of
disjoint sets.

Provides operations for
adding new sets, merging
sets, and finding a
representative member of
a set.

Some Conventions

The Disjoint Set maintains an array called id that keeps track of the
component of each vertex. (i.e., if id[i] = 4, then vertex i isin the
component labeled 4).

Initially, each vertex is its own component. So, id[i] = i, Vi.

Maintain a count of the number of components. That is, the starting
number of componentsisn = |V].

02

Quick-Find

Let’s prioritize the find function

Quick-Find

UF(n)
count « n
for i from @ to n-1 do
id[i] « i
end for

function union(p:item, q:item)
exit if id[p] = id[q]
idP « id[p]
idQ « id[q]
for i from @ to n-1 do
if id[i] = idP then
id[i] « idQ
end if
end for
count « count - 1
end function

function find(p:item)
return id[p]
end function

function connected(p:item, q:item)
return id[p] = id[q]
end function

function count()
return count
End function

10

0U|Ck'F|nd (6, 2)/ (9, 5)/ (3, O)I (9, 4)/ (3, 1)

(6,2) 0O 1 2 3 4 5 2 7 8 9
(9.5) O 1 2 3 4 5 2 7 8 5
(3,00 0 1 2 0 4 5 2 7 8 5
(9,4) 0 1 2 0 4 4 2 7 8 4
(3,1)

sssococ00e — 5 8 800

—
N
o~
s~
N
~
(@]
S~

03

Quick- Unlon

Let's prioritize the

Quick-Union

id is set up like a tree so that id[i] gives you its parent, and
so on, until you get to a value that points to itself (the root).

Only one update is needed to union two sets but how many
items are checked to find the root?

13

O,

id[] is parens-link representation
of a forest of trees

find has to follow links to the root
pgq 01234567829

59 1118305188
t t

find(5) is find(9) is
id[id[id[5)]1] id[id[9]]

wnion changes just one link

pq 01234567389

SS9 111830 1 88
8183 8 8

Quick-union overview

Algorithms, 4t edition, Sedgewick and Wayne. Official web site

14

Quick-Union

UF(n):
count « n
for i from @ to n-1 do
id[i] « i
end for

function union(p:item, q:item)
idP « find(p)
idQ « find(q)
exit if idP = idQ
id[idP] « idQ
count « count - 1
end function

function find(p:item)
while p # id[p] do
p « id[p]
end while
return p
end function

function connected(p:item, qg:item)
return find(p) = find(q)
end function

function count()
return count
end function

15

0U|Ck'Un|0n (6, 2)1 (9, 5)/ (2, O)I (4, 9)/ (5,])

(6,2) 0O 1 2 3 4 5 2 7 8 9
(9.5) O 1 2 3 4 5 2 7 8 5
(200 0O 1 0 3 4 5 2 7 8 5
(4,9) 0O 1 0 3 5 5 2 7 8 5
(5,1)

ssssccssss = & 5 090

16

o
—_
(@=)
(@X]
(éa]
—
N
~
(@]
(éa]

About Quick-Union

« Asconnections are added, you get fewer but larger trees
(correspond to components).

o If the runtime of key operations depends on the height of
the tree, what is the worst case?

17

04

Improvements

eeeeeeeeeeeeeeeeeeeeeeeeeee

Remember Quick-Union

id is set up like a tree so that id[i] gives you its parent, and
so on, until you get to a value that points to itself (the root).

Only one update is needed to union two sets but how many
items are checked to find the root?

19

O,

id[] is parens-link representation
of a forest of trees

find has to follow links to the root
pgq 01234567829

59 1118305188
t t

find(5) is find(9) is
id[id[id[5)]1] id[id[9]]

wnion changes just one link

pq 01234567389

SS9 111830 1 88
8183 8 8

Quick-union overview

Algorithms, 4t edition, Sedgewick and Wayne. Official web site

20

About Quick-Union

« Asconnections are added, you get fewer but larger trees
(correspond to components).

o If the runtime of key operations depends on the height of
the tree, what is the worst case?

21

Weighted Quick-Union

quick-union @

/ smaller\
\ tree) (P
/smaller\ /' laroer
: \ tree) | qree
i X might put the ~—" N___
g) larger tree lower
tree
weighted
always chooses the
/ better alternative
[larger \ /smaller\ /smaller /' larger
tree) tree) e) (tree
Weighted quick-union

Algorithms, 4t edition, Sedgewick and Wayne. Official web site

22

Weighted
Quick-Union

UF(n:Z")
count « n
for 1 from © to n-1 do
id[i] « 1
size[i] « 1
end for

function union(p:item, q:item)
idP « find(p)
idQ « find(q)
exit if idP = idQ
if size[idP] < size[idQ] then
id[idP] « idQ
size[idQ] « size[idQ] + size[idP]
else
id[idQ] « idP
size[idP] « size[idP] + size[idQ]
end if
count « count - 1
end function

Same as Quick-Union:
find(p)
connected(p, q)
count()

Path Compression

Main Idea: [deally, we want every node to link directly to its root.

How? After we find the root of p, update the root for every element
between p and the root (i.e., elements in the branch connect
immediately to the root).

But...it's expensive to change all the elements (remember Quick-Find?)

Solution: Change the elements you examine as you look for the root. We
can do this in multiple ways (e.qg., recursion, memoization).

What's the runtime?

24

Find(9) returns 0

=)

Setto 0 the
id of all
nodes in
the path
from9to0

Path Compression Goal

https://researchhubs.com/post/computing/algorithm-1/quick-union-improvement-compressing.html

https://researchhubs.com/post/computing/algorithm-1/quick-union-improvement-compressing.html

Recursive Path
Compression

function find(p:item)
if p = id[p] then
return p
end if
id[p] « find(id[p])
return id[p]
end function

Same as [Weighted] Quick-Union:

UF(n)

union(p, Q)
connected(p, Q)
count()

26

Iterative Path
Compression

function find(p:item)
idP « p
while idP # id[idP] do
idP « id[idP]
end while
while p # idP do
t « id[p]
id[p] « idP
p«t
end while
return idP
end function

Same as [Weighted] Quick-Union:
UF(n)

union(p, q)

connected(p, q)

count()

27

I . . h
Do you have any questions?
CREDITS: This presentation template was created by Slidesgo, including

icons by Flaticon, infographics & images by Freepik and illustrations by
Stories

28

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: Union-Find
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: Union-Find
	Slide 5: Dynamic Connectivity
	Slide 6: Some Applications
	Slide 7: Union-Find
	Slide 8: Some Conventions
	Slide 9: Quick-Find
	Slide 10: Quick-Find
	Slide 11
	Slide 12: Quick-Union
	Slide 13: Quick-Union
	Slide 14
	Slide 15: Quick-Union
	Slide 16
	Slide 17: About Quick-Union
	Slide 18: Improvements
	Slide 19: Remember Quick-Union
	Slide 20
	Slide 21: About Quick-Union
	Slide 22: Weighted Quick-Union
	Slide 23: Weighted Quick-Union
	Slide 24: Path Compression
	Slide 25: Path Compression Goal
	Slide 26: Recursive Path Compression
	Slide 27: Iterative Path Compression
	Slide 28: Finish

